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Mining Semantically Consistent Patterns
for Cross-View Data

Abstract—In some real world applications, like information retrieval and data classification, we often are confronted with the situation
that the same semantic concept can be expressed using different views with similar information. Thus, how to obtain a certain

Semantically Consistent Patterns (SCP) for cross-view data, which embeds the complementary information from different views, is of
great importance for those applications. However, the heterogeneity among cross-view representations brings a significant challenge
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on mining the SCP. In this paper, we propose a general framework to discover the SCP for cross-view data. Specifically, aiming at
building a feature-isomorphic space among different views, a novel Isomorphic Relevant Redundant Transformation (IRRT) is

first proposed. The IRRT linearly maps multiple heterogeneous low-level feature spaces to a high-dimensional redundant
feature-isomorphic one, which we name as mid-level space. Thus, much more complementary information from different views can be
captured. Furthermore, to mine the semantic consistency among the isomorphic representations in the mid-level space, we propose a
new Correlation-based Joint Feature Learning (CJFL) model to extract a unique high-level semantic subspace shared across the
feature-isomorphic data. Consequently, the SCP for cross-view data can be obtained. Comprehensive experiments on three data sets
demonstrate the advantages of our framework in classification and retrieval.

Index Terms—Cross-view, cross-media, shared subspace learning, heterogeneous data, dimensionality reduction

1 INTRODUCTION

WITH the rapid development of information technol-
ogy, cross-view data have been widely available in
the real world. The so-called cross-view data refer to infor-
mation items with similar underlying contents, which arrive
in different forms, backgrounds or modalities, and so on.
For example, in handwritten digit recognition [1], the same
digit is written in different forms by different persons; for
semantic scene classification [2], different natural scenes
(backgrounds) may contain some similar objects; in the case
of multimedia retrieval [3], the co-occurring text and image
of different modalities, carrying similar semantic informa-
tion, generally exist in a webpage also known as a
Multimedia Document (MMD) [4]. These examples can be
well illustrated by three publicly available cross-view data
sets, namely, UCI Multiple Features (UCI MFeat) [5],
COREL 5K [6], and Wikipedia [7], as shown in Fig. 1.
Naturally, if the representations of different views can be
integrated into a certain Semantically Consistent Patterns
(SCP) covering the overall complementary information
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from all views, then the resulting consistent representation
will be more favorable for fully exploiting the complemen-
tarity among different views.

However, it is a challenging task to mine the SCP for
cross-view data. First of all, since different views span het-
erogeneous low-level feature spaces, there is no explicit cor-
respondence among the cross-view representations. For
example, the co-occurring image and text in a webpage con-
vey the same semantic concept from the perspectives of
vision and writing, respectively, so it is not easy to directly
measure the relationship between them based on their own
heterogeneous representations. Therefore, to correlate dif-
ferent views, an issue to be first addressed is to build a mid-
level feature-isomorphic space, in which the complemen-
tary information from different views will be fully
embedded.

Meanwhile, for the isomorphic representation in the
mid-level space, it can be assumed as illustrated in Fig. 2
that it is mainly composed of requisite, redundant, and
noisy components, respectively [8]. The requisite compo-
nent refers to the complimentary information among
isomorphic representations that is requisite for building
the Semantically Consistent Patterns with prior knowl-
edge. Unlike the requisite component, the later two refer
to non-requisite information. But the difference between
them lies in that the redundant component takes high rela-
tivity with the requisite component, whereas the noisy one
takes no relativity with both the requisite and redundant
components. Hence, another issue we need further to deal
with for mining the SCP is to extract a unique high-level
semantic subspace shared across the feature-isomorphic
data. Thus, the above requisite component can be well pre-
served without the redundant and noisy components
being remained.
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See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2746

(a) The digit 7 in different forms.

(c) The co-occurring text and image modalities.

Fig. 1. The cases of cross-view data. Examples from UCI MFeat (top
row), COREL 5K (mid row), and Wikipedia (bottom row) data sets.

1.1 Main Contributions
To address the issues mentioned above, the key contribu-
tions of this paper are highlighted as follows:

e A general framework for mining the Semantically
Consistent Patterns for cross-view data is proposed.
In this framework, a mid-level redundant feature-
isomorphic space is learned to build a bridge
between multiple heterogeneous low-level feature
spaces and a unique high-level semantically shared
one.

e We propose a novel Isomorphic Relevant Redundant
Transformation (IRRT) with low rank constraints,
which linearly maps multiple heterogeneous low-
level feature spaces to a mid-level redundant fea-
ture-isomorphic one, to capture complementary
information from different views. To the best of our
knowledge, no existing efforts have focused on this
type of mapping.

e A new trace ratio based shared subspace learning
algorithm, called Correlation-based Joint Feature
Learning (CJFL) model, is proposed to extract a
unique high-level semantic subspace shared across
the feature-isomorphic data. By exploiting the corre-
lation across isomorphic representations, the requi-
site component is maintained to a large extent while
eliminating the redundant and noisy information.

o Extensive experiments on three publicly available
cross-view data sets are conducted to demonstrate
the effectiveness of the proposed framework.

1.2 Organization

The remainder of this paper is organized as follows: Section 2
gives a broad overview of some related works and defines
the notations to be used throughout this paper. We present a
general framework for mining the Semantically Consistent
Patterns for cross-view data in Section 3.1. In Section 3.2, a
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Fig. 2. Components of Isomorphic representation in mid-level space.

novel Isomorphic Relevant Redundant Transformation is
developed for correlating different views. We build a new
Correlation-based Joint Feature Learning model to mine the
semantic consistency among isomorphic representations in
Section 3.3. Experimental results and analyses are reported
in Section 4. Section 5 concludes this paper.

2 RELATED WORKS AND NOTATIONS

This section reviews some related works and sets up some
notations.

2.1 Related Works

To eliminate the heterogeneity across different views, in the
past decades, some classical statistical analysis techniques
for modeling correlation between sets of observed variables
have been proposed, such as Canonical Correlation
Analysis (CCA) [9] and Partial Least Squares (PLS) [10].
They both compute low-dimensional embedding of sets of
variables simultaneously. The main difference of them is
that CCA maximizes the correlation between variables in the
embedded space, while PLS maximizes their covariance.

In particular, CCA is a classical and generally accepted
method for feature extraction in the multi-view problem
[11]. It has a wide range of applications such as computa-
tional biology, financial analysis, and information retrieval,
and so on. Furthermore, some state-of-the-art algorithms
proposed recently in the multi-view problem have indicated
that CCA can be applied to cross-media retrieval [7], [12],
clustering [13], and classification [14] of multi-view data. In
addition, when one of the views is the predictors induced
from the class label, it has been proven that CCA is equiva-
lent to LDA [9].

In [7], a cross-view retrieval method based on CCA has
been proposed to obtain the common representations
among different views. Hardoon et al. [12] presented a
general method using kernel CCA to learn a semantic
representation to web images and their associated text. In
addition, a multi-view clustering approach via CCA has
been proposed by Chaudhuri et al. [13] to project multiple
views of the data into a low-dimensional subspace. Fur-
thermore, Sharma et al. [14] presented a general CCA-
based multi-view feature extraction approach, which can
be used for cross-view classification and retrieval.

Fig. 3 gives an overall illustration of CCA. As shown in
Fig. 3, since the features between the heterogeneous presen-
tations from different views are usually complementary, the
extracted features from the heterogeneous presentations by
CCA are beneficial for the retrieval, clustering, and classifi-
cation of multi-view data.
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However, CCA may not extract useful descriptors of
data due to its inherent limitation [12]. Kernel CCA offers
an alternative solution by implicitly nonlinearly mapping
the data into a high-dimensional feature space. Recently,
Hardoon et al. [12] proposed a general method using
KCCA to learn a semantic representation to web images
and their associated text.

In addition, some transformational methods have also
been recently proposed for multi-view classification.
Kusakunniran et al. [15] presented a View Transformation
Model (VTM) from a different point of view using Sup-
port Vector Regression (SVR). In [16], Koterba et al. stud-
ied a Multi-view Active Appearance Model (MAAM) for
fitting and construction. Huang et al. [17] proposed a Vec-
tor Boosting (VB) algorithm, called Multi-View Face
Detector (MVFD), to divide the entire face space into
smaller subspaces.

Meanwhile, although data can be represented by a great
deal of features, they are known to be noisy, ambiguous,
incomplete, and subjective. These factors can seriously
affect the performance of data representations. However,
Chen et al. [18] have recently pointed out that the shared
structures among different representations generally
embody the consistence and coherence of features that co-
occur at different representations. Thus, such shared struc-
tures tend to characterize beneficially the semantic concept
while eliminating noise and redundancy.

Therefore, a number of researchers have recently intro-
duced various shared subspace learning algorithms to mine
the semantic consistency among isomorphic representa-
tions. The so-called shared subspace learning aims to cap-
ture the common features (semantic consistency).

Up to now, the existing shared subspace learning
methods involve multi-task learning [19], [20], [21], [22],
multi-label classification [23], [24], multi-class classifica-
tion [25], [26], and matrix factorization [27], [28], [29],
[30], which have gained promising performances in some
real applications.

In multi-task learning, each task is generally provided
with different training samples, but all tasks share the
same set of features. Ando and Zhang [19] introduced an
Alternating Structure Optimization (ASO) formulation for
learning a shared predictive structure from multiple

related tasks. Moreover, a framework of Convex Multi-
Task Feature Learning (CMTFL) was proposed in [20] for
learning a shared feature subspace on which all tasks per-
formed well.

When all tasks share the same set of training data and
features, multi-task learning is equivalent to multi-label
learning in which each sample can be associated with multi-
ple labels. Specifically, as all the labels share the same input
space in multi-label classification, the semantics conveyed
by different labels are usually correlated. Thus, Ji et al. [23]
proposed a shared-subspace learning framework based on
the least squares loss, called Shared-Subspace for Multi-
Label Classification (SSMLC), to exploit the correlation
information in multi-label learning.

Multi-class learning deals with the learning scenario
where each sample is associated with a single label. From
this viewpoint, multi-class learning can be seen as a special
case of multi-label learning. In multi-class learning, different
classes may be built on some underlying common character-
istics and thus related to each other. Hence, for extracting a
low-dimensional shared subspace in the multi-class prob-
lem, a formulation called Shared Structures in Multi-Class
Classification (SSMCC) has been proposed by Amit et al.
[25], in which a low-rank transformation was computed.

Additionally, different from the above-mentioned super-
vised mode, an unsupervised Joint Shared Nonnegative
Matrix Factorization (JSNMF) method has been recently
proposed in [27] to capture the shared base vectors between
two data sets with their individual bases corresponding to
the discriminant subspace. This approach was formulated
under the framework of Nonnegative Matrix Factorization
(NMF) [31], which uses an auxiliary source to improve the
performance from a primary data set on the basis of nonne-
gativity constraints on all matrices involved.

2.2 Notations

Here we establish some notations to be used throughout
this paper. Assume V, and V, are two different views. Let
the data matrices X = [wl, . :c”] eR™4% and Y =
W1, yn)" € R™% be two sets of heterogeneous represen-
tations from the V, and V|, respectively, where z; € R% is
the ith sample from V;, y; € R% is the ith sample from V,, n
is the number of training samples, d, and d, are the
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Fig. 4. Framework for mining semantically consistent patterns for cross-view data.

dimensionalities of the heterogeneous low-level feature
spaces V, and V,. Note that for i =1,...,n, (z;,v;) repre-
sents the ith couple of heterogeneous representations. We
assume that both {z;};_; and {y;}_, are centered, ie.,

i=1
Z;Lzl xT; = 0 and Z;Lzl Yi = 0.

We use ||4]| = _1 >_j_1 a;; to denote the Frobenius

i=1 24j=1
norm of a matrix A = [a;] € ]Iépxq, and [|All, = >_i_, 0; is the
trace norm of A, where r = rank(A) denotes the rank of A
and {o;};_; is the set of singular values of A in a non-
increasing order. Let tr(A) = > | a; be the trace of A. For
two matrices A and B, (A, B) = tr(A” B) denotes the matrix
inner product. For a vector b € R?, let ||b]|, = /> _"_, b be
the ¢y-norm of b.

Besides, v f(C) denotes the gradient of any smooth func-
tion f(e) at the point C; let | H| be the number of elements in
the set H; for w € R?, we denote by diag(w) the diagonal
matrix having the components of the vector w on the diago-

nal; I is the identity matrix.

3 DISCOVERING SEMANTICALLY CONSISTENT
PATTERNS FOR CROSS-VIEW DATA

Here we propose a general framework to mine the SCP for
cross-view data. To facilitate the understanding of our pro-
posed framework, Fig. 4 gives an overall illustration of the
proposed framework. More details are presented in the fol-
lowing sections.

3.1 The Proposed Framework

As shown in Fig. 4, a mid-level high-dimensional redundant
feature-isomorphic space is learned to build a bridge
between multiple heterogeneous low-level feature spaces
and a unique high-level semantically shared one in the pro-
posed framework.

Specifically, to fully exploit the complementarity among
different views, multiple linear transformations are learned
to eliminate the heterogeneity across them. Thus, a mid-
level redundant feature-isomorphic space is obtained, in
which the correlated representations from different views
are coupled together to capture much more complementary
information from different views. Accordingly, we can
directly measure the correlation among the cross-view data
in the mid-level high-dimensional space. For example, the
ith co-occurring samples z; and y; are projected to the

redundant feature-isomorphic space to eliminate the hetero-
geneity across them.

Furthermore, to mine the semantic consistency among
the isomorphic representations, a unique high-level seman-
tic subspace shared across the feature-isomorphic data is
extracted with prior knowledge. In the semantically shared
subspace, the samples of the same class from the same view
can be grouped together while keeping the instances from
different categories away from each other simultaneously.
Thus, the redundant and noisy information in the mid-level
space is eliminated effectively. For instance, the ith coupled
representation is mapped into a semantically shared sub-
space for keeping their complementary.

With the requisite complementary information from the
mid-level space, the resulting SCP as displayed in Fig. 4 will
be more likely to be linearly separable, compared sharply
with any single view.

3.2 Building a Feature-lsomorphic Space among
Different Views

A novel Isomorphic Relevant Redundant Transformation is

developed for correlating different views and an efficient

algorithm for solving the IRRT model is presented in this

section.

3.2.1 The Proposed IRRT Model

As a classical correlation analysis method, CCA [9] can
obtain a low-dimensional embedding of the sets of hetero-
geneous representations from different views in a feature-
isomorphic space. It can be formulated as follows:

min | XA - YB|?%
A,B (1)

st. ATX"XA=TI and B'Y'YB=1,

where A € R=*?, Be R%?, and p € {1,...,min(d,, dy)}.
Then for the ith couple of heterogeneous representations
(xi,y;), we can obtain their own isomorphic correlated rep-

resentations with the optimal A* and B* by:
My, = ATz and Wy, = BTy,

(2)

Furthermore, we can get an integrated representation 1, in
the feature-isomorphic space based on p,, and p,,:
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Although based on a good mathematical formulation, the
reduced dimensionality p must not be larger than
min(d,,d,) due to the inherent limitation of CCA. It means
that some requisite information may be lost in the dimen-
sion-reduced space. In practice, as illustrated in Fig. 2, the
underlying complementary information (requisite compo-
nent) from different views tends to be hidden in a high-
dimensional space mingled with the redundant and noisy
components [8].

Recently, Liu et al. [32] have pointed out that the rank is
a powerful tool to capture some type of underlying infor-
mation in the matrix case. Nevertheless, “rank(e)” is not a
convex function, which leads to the difficulty in finding
the optimal solution. Fortunately, Candes and Recht [33],
Recht et al. [34], and Candes and Tao [35] have theoreti-
cally justified that the trace norm of a matrix can be used
to approximate the rank of the matrix. Therefore, based on
the above-mentioned strong theoretical supports [8], [32],
[33], [34], [35], we propose a novel Isomorphic Relevant
Redundant Transformation with trace norm constraints to
linearly map multiple heterogeneous low-level feature
spaces to a high-dimensional redundant feature-isomor-
phic one. Consequently, the correlated representations
from different views are coupled together to capture
much more complementary information. We name this
redundant feature-isomorphic space as a mid-level space.
Hence, we have the following optimization problem:

min || XA - YB|%
AB

q’] : ' (4)
st. || XAl, <e and |YB|, <y,

where ¢ and y are pre-specified positive parameters to con-
trol the amount of information carried by the transformed
data. The motivation of introducing the trace norm con-
straints in Eq. (4) is to capture much more underlying com-
plementary information from different views in the feature-
isomorphic space.

Seemingly, our proposed IRRT model looks like an
extension of CCA. However, in fact, IRRT is completely dif-
ferent from CCA in terms of its theoretical basis.

Unlike the reduced dimensionality in CCA, ie., p <
min(d,,d,), our proposed IRRT model can linearly project
the cross-view data into a feature-isomorphic space of even
higher dimensions. That is to say, p may be greater than
both d, and d,, i.e., p > max(d,,d,). It is worth to note that
no similar numerical method has been yet proposed and
IRRT is greatly different from well-known kernel methods
without an explicit high-dimensional projection.

In addition, CCA imposes the orthogonal constraints on
the canonical variables so as to project two views of the
same set of objects onto a lower-dimensional space in
which they are maximally correlated. Different from the
orthogonal constraints in CCA, the low rank constraints
are enforced in IRRT on the transformed data with the aim
of linearly mapping multi-view data to a high-dimensional
redundant feature-isomorphic space.

Finally, as a classical statistical analysis technology, CCA is
generally converted into an eigenvalue problem in which the
close-form solutions can be obtained. However, we will prove
below that the proposed IRRT method can be converted to a
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relaxed convex optimization problem for which there is an
iterative algorithm which converges to an optimal solution.

Thus, in essence, our IRRT method and CCA do not have
much in common. It is not a simple extension of CCA.

Note that to solve the problem ¥ in Eq. (4) directly is not
a trivial task for two main reasons. First, it is a non-convex
problem, although it is separately convex with respect to
each variable A or B. Second, the trace norm constraints are
not smooth, which makes it even more difficult to find the
optimum. However, Lemma 1 shows that the trace norm
constraints on the transformed data in ¥, can be relaxedly
converted into the trace norm constraints on the projection
matrices in Ws.

Lemma 1. For a positive number § and any two conformable
matrices C and D, if

ICILIDI, <8,
then

ICD]|, <.

Proof. As the trace norm is a matrix norm, it satisfies the
compatibility for any two conformable matrices [36,
Chapter 5.2, page 280]. So we can get

ICD]l, < ICIL DI,

Thus if |C|,|| D], <4, then ||CD||, <§. This completes
the proof of the lemma. O

According to Lemma 1, if the pre-specified positive
parameters € and y in ¥, satisfy

IXIL Al < e and [[Y].[[BI, <v, ()

then we can obviously obtain || XA|, <e and ||YB|, <7y.
Thus the trace norm constraints in ¥, can be converted into

1Bll. < v/IIY1.- (6)

Consequently, with the relaxed constraints in Eq. (6), the
formulation ¥, can be reformulated as follows:

Al <&/l Xl and

min| XA — YB|
v, AP (7)

st Al <&/ X[, and | B, <¥/[Y].-

3.2.2 An Efficient Solver for ¥V,

For notational simplicity, we denote the optimization prob-
lem ¥, by:

; Z
min  f(2), (8)
where f(e) = o ||§ is a smooth objective function, Z =

[Az Byz] symbolically represents the optimization varia-
bles, and C is the closed and convex domain set defined by:

C={ZlllAz|l. <e/IIXN. 1Bzl < v/IYILY- (9)

As f(e) is continuously differentiable with Lipschitz con-
tinuous gradient L [37]:

Ivf(Ze) = v (Z)r < L Ze = 2yl V20, Z, € C, (10)
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it is appropriate to adopt the Accelerated Projected Gradient
(APG) [37] method to solve the problem in Eq. (8). APG has
been successfully applied in the following minimization
problem:

min  g(2),
2€G

(11)

where g(e) is a smooth objective function, z is the optimiza-
tion variable, and G is the feasible domain of the optimiza-
tion problem.

Note that, in the APG algorithm, the euclidean projection
of a given point s onto the convex set G = {z|||z|, < m} can
be defined by:

. . 2
projg(s) = arg  min||z — s|;/2, (12)
where m is a pre-specified positive constant. Then we can

use the algorithm proposed in [38] to solve Eq. (12). The
details are given in Algorithm 1.

Algorithm 1: Efficient Projection on Trace Norm Con-
straints (EPTNC) [38]

Input: s, G.

Output: 2*.

1: Compute singular value decomposition of s as

s=UX VT,

2:Setp=1|H|, H={i€1l,--- ,n|lo; > 0,0 is the
i-th singular value of s}.

: Define § =( >0, 05 —m )/p.

: Set 7, = max{o; — 0,0}.

: Define 3.« = diag(o1,- - -,0,,0).

: Compute z* = U;X - V.

N Ul = W

Algorithm 2: Isomorphic Relevant Redundant Trans-
formation (IRRT)

Input: f(e), Zo=[Az, Bz, 71,C, to=1, and maaz—iter.
Output: Z*.

1: Define f,5(Z) = f(S)+(7f(S), Z—S)+7 |1 Z-S|3/2.
2: Set AZ1 = AZO and le = BZO-

3: for 1 =1,2,- - -,max—iter do

4: Set a; = (ti—l — 1)/ti_1.

5: Compute Ag, = (1 + a)Az, — Az, .
6: Compute Bg, = (1 + ;)Bz, — a;Bz, .
7: Set Sz' = [ASZ le}

8: Compute V4, f(As,) and Vg, f(Bs,).

9: while (true)

10: Compute As = Ag, — Vag f(As,) /-
11: Compute Bs = Bs, — Vg f(Bs,) /-
12: Compute [Az, . | = EPTNC(Ag,C).
13: Compute [By, ] = EPTNC(Bs,C).
14: Set Z;11 = [AZHrl BZi+1]'

15: if f(Zz+1) < f’)/i,si (Zi+1), then break;
16: else Update v; = ; x 2.

17: end-if

18: end-while

19: Update ¢; :(14—, [1+4t2 )/2 and v 1 =".

20: end-for
21: Set Z* = Zi+1.
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When applying the APG method for solving the problem
in Eq. (8), the euclidean projection Z = [A; By] of a given
point S = [Ag Bg] onto the set C is defined by:

proje(S) = arg min||Z — Sl%/2. (13)
S
By combining APG and Algorithm 1, we can solve the prob-
lem in Eq. (8). The details are given in Algorithm 2.

3.3 Mining the Semantic Consistency among
Isomorphic Representations

This section presents a new shared subspace learning algo-

rithm, called Correlation-based Joint Feature Learning

model, to mine the semantic consistency among isomorphic

representations, and shows how to solve the CJFL model.

3.3.1 The Proposed CJFL Model

In Section 3.2, we have built a mid-level high-dimensional
redundant feature-isomorphic space for correlating differ-
ent views, in which the embedded requisite component
tends to be exact, clear, complete, and objective. However,
as shown in Fig. 2, some redundant and noisy components
inevitably co-exist with the requisite one in the space. These
factors can seriously affect the performance of the mid-level
data representations.

Therefore, it is essential to extract a unique high-level low-
dimensional semantic subspace shared across the feature-iso-
morphic data to eliminate both the redundant and noisy infor-
mation in the mid-level high-dimensional redundant space.

Recently, some trace ratio algorithms such as Linear Dis-
criminant Analysis (LDA) [39], Semantic Subspace Projec-
tion (SSP) [40], and Trace Ratio Optimization Problem
(TROP) [41] have been proven to be effective in redundancy
and noise reduction. For the purpose of finding a projection
matrix W to simultaneously minimize the within-class dis-
tance while maximizing the between-class distance, a trace
ratio optimization problem is formulated as follows [41]:

tr(WTHW)

r(VTGI) 14

max

wrw=r1
where H and G denote the between-class and within-class
scatter matrices, respectively. However, since these meth-
ods were originally developed for handling single view
problems, they do not fully take into account the correlation
across isomorphic representations.

Thereby, unlike some previous supervised shared sub-
space learning methods based on least squares [19], [20],
[23], [25] and matrix factorization [27] techniques, we pro-
pose a new trace ratio based shared subspace learning
algorithm, called Correlation-based Joint Feature Learning
model. By exploiting the correlations across isomorphic rep-
resentations, CJFL could extract a unique high-level seman-
tically shared subspace. In this subspace, the requisite
component will be maintained to a large extent without the
redundant and noisy information being remained. Corre-
spondingly, the SCP for cross-view data can be obtained.

Specifically, let (4%, B*) be the optimal solutions of the
problem ¥,. Then we have the sets of isomorphic relevant
redundant representations J = {a; = A*T2;}!_| and R=
{b; = BTy;}_,. Let C'y and C}, be the sample sets of ¢th class
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from J and R, respectively. We define

S = {(ai,aj) |ai,a; € C,i # j}, (15)
S = {(bi, b)) | bi,b; € Cyi # 5}, (16)
D‘Xk:{(ai,a‘jﬂai 60&/\@,60@,2’7’5]}157““}7 (17)
D = {(b;, b)) |b; € CL Abj € CELi# Gt # kY. (18)

Let
Sx=J,Sk and Sy=J,S} (19)
py=J,UJ 0% and Dy=J,J,DF (20

Obviously, each pair of data from Sy or Sy is semantically
similar to each other and the one from Dy or Dy is semanti-
cally dissimilar to each other.

To eliminate the redundant and noisy information in the
mid-level high-dimensional space, we need to learn a linear
transformation © € R”** with prior knowledge (class infor-
mation in our case) to parameterize the semantically shared
subspace, where k is the dimensionality of the subspace.
Mathematically, we would like to minimize the within-class
distance as follows:

Z (@Ta - G)Taj)T(@Taq; - @Taj)
V((L,',(Lj)ESX
+ Z (075 - ©"1)" (076 — 0"1))
V(Z) )68}
= > ¢ —a;)(a; —a;)'®)
V(aj,a ) (21)
+ Z r(© (b — b)) (bi —b,)"®)
V(b;bj)eSy
= tr(0" J50) + tr(®' Rs0)
= tr(®" (Js + Rs)0),
where
Js = (a; — a;)(a; — aj)", (22)
V(a;,a;)€Sx
Rs = (b — bj)(bi — b)), (23)
V(b,’,bj)GSY

and Js + Rs is a joint within-class scatter matrix from both
J and R. Meanwhile, we also expect to maximize the
between-class distance as follows:

Z (@Tai — G)Taj)T(@Tai — @Ta]')
V((li,a]')EDX
+ > (07h - 0"h,) (07h — 0"h))
V(b;,b;)EDy
— Z —a;)(a; — a;)" ©)
Yoo (24)
+ Z r(©"(bi — by) (b — b)) ©)
V(l)i.,b])EDy
= tr(®" Jp®) + tr(0" RpO)
= tr(®” (Jp + Rp)0®),
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where
o= > (ai—a)(a—q), (25)
V(a,l‘4(l]‘)EDX
Rp = b;)(bi — b;)", (26)
V(l)i‘bj)EDy

and Jp + Rp is a joint between-class scatter matrix from
both J and R. To simultaneously minimize the within-class
distance while maximizing the between-class distance, it is
straightforward to formulate the above problem as a trace
ratio optimization problem:

t’f'(@T(JD + RD)®)
tr(®" (Js + Rs)®)’

O : max
olo=r1

(27)

where the orthogonal constraint for ® is used to eliminate
the redundant information in the mid-level space, which
takes high relativity with the requisite component. Unlike
the scatter matrices in LAD [39], SSP [40], and TROP [41],
both the joint within-class and between-class scatter matri-
ces Js+ Rs and Jp + Rp make a full use of the identity of
sample distributions from different views in the mid-level
feature-isomorphic space.

On the other hand, the complementarity across isomor-
phic representations should be well preserved. Thus, we
can redefine the formulation (), by:

tr(®” (Jp + Rp)®)

tr(0" (Js + Rs)®) + || JO — RO||7. + B||O] 7.
(28)

Oy . max
ole=r

where the term [|J© — RO||3. denotes the correlation-based
residual to avoid violating the intrinsic structure of the cou-
pled representations, the regularization term |®]% controls
the complexity of the model, and «, B > 0 are the regulari-
zation parameters.

3.3.2 An Efficient Solver for (),
The optimal ®" for the problem in Eq. (28) can be obtained

by maximizing the following trace difference problem:

tT(@T(JD + RD)®) — nttT(@)T(JS + R5)®)

0" =arg mazx
oTe=1

— n,atr((JO — RO)" (JO — RO)) — n,ptr(070)

=arg mazx tr(®"(Jp + Rp — n,(Js + Rs))0®)
oTo=1
— n,tr(a(®7 7770 — 207 JTRO + OT R RO) + 07 0)

=arg mazx tr(®"(Jp+ Rp —n,(Js + Rs
oTe=1

+a(J'J —2J'R+ R"R) + BI))0),
(29)

where 7, [see Eq. (32)] is the trace ratio value of the tth itera-
tion. Hence, ®" is composed of the eigenvectors correspond-
ing to the k largest eigenvalues of the matrix Jp 4+ Rp—
n,(Js + Rs + a(J'J —2J"R + RT'R) + BI). We can use the
iterative algorithm proposed in [41] to solve the problem in
Eq. (29). The details are given in Algorithm 3.
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Algorithm 3: Correlation-based Joint Feature Learn-

ing (CJFL)

Input: an arbitrary columnly orthogonal matrix O,
the matrices J, R, Jp, Rp, Js, and Rs, a posi-
tive integer h, two positive numbers « and 3,
and maax—iter.

Output: ©*.

1: for t =0,1,2, - -,max—iter do

2: Compute

o P (O (Jp+Rp)O:)

t— .
tr(07 (Js+Rs)O1)+allJO,— RO % +ﬁll®t\l%(30

4: Perform eigen-decomposition of the matrix
Jp+Rp—ni(Js+Rs+a(JTJ—2J"R+ RTR)
+BI) as PAPT.

5: ©¢41 is given by the column vectors of the
matrix P corresponding to the & largest eigen-
value.

6: end-for

7: Set ©F = ®t+1'

3.3.3 Semantically Consistent Patterns

Let (A*, B*) be the optimal solution of the problem ¥, and
O be the optimal one of the problem €),. Then, for the ith
couple of heterogeneous representations (z;,v;), we can
obtain their own isomorphic relevant representations with
the optimal A*, B*, and O as follows:

Ty, = O TA Tz, and Ty, = 0T Ty, (31)

In addition, we can exploit the consistent representation ;
of different views, i.e., the Semantically Consistent Patterns
for the cross-view data in the semantically shared subspace
based on 7., and 7,

7, = (14, + 1y,)/2. (32)

4 EXPERIMENTAL RESULTS AND ANALYSES

In this section, we evaluate and analyze the effectiveness of
the learned SCP by the proposed framework for cross-view
data.

4.1 Data Sets
Our experiments are conducted on three publicly available
cross-view data sets, namely, UCI Multiple Features (UCI
MFeat) [5], COREL 5K [6], and Wikipedia [7]. The statistics
of the data sets are given in Table 1.

o UCI MFeat data set

It consists of features of handwritten numerals (‘0’-‘9"),
which are represented in terms of six different feature sets.
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Each number represents a class in which there are 200 dif-
ferent written forms corresponding to the same original
character. The fou and zer feature sets were randomly
picked up to test the performance of our proposed models.

e Corel 5K data set

It contains 260 categories of images of various contents
ranging from animals to vehicles, which are represented in
terms of 15 different feature sets. Each category includes a
number of pictures under different natural scenarios corre-
sponding to the same semantic class. Similarly, we selected
the DenseHue and HarrisHue feature sets at random.
DenseHue and HarrisHue are two visual features provided
by Guillaumin et al. [42]. They use local SIFT features [43]
and local hue histograms [44]. DenseHue is computed on a
dense multiscale grid, and HarrisHue is computed on
regions found with a Harris interest-point detector.

e Wikipedia data set

It is composed of 2,866 MMDs [4] selected from the
Wikipedia’s featured article collection, in which each MMD
includes a single image and at least 70 words of text corre-
sponding to the same semantic concept. Instead of directly
using an original representation as in [7], the TF-IDF encod-
ing method is used to form the text representation.

Brief descriptions of the chosen feature sets in the above-
mentioned data sets are listed in Table 2.

4.2 Experimental Setup

Note that all the data are normalized to unit length. Each
data set is randomly separated into a training set and a test
set. The training samples account for 80 percent of each
original data set, and the remaining ones act as the test data.
Such a partition of each data set is repeated five times and
the average performance is reported.

In real-world applications such as classification and
retrieval, the parameters in the proposed framework can
be alternately set by five-fold cross-validation based on the
AUC and MAP, respectively. Specifically, for IRRT, the
nonnegative constraint parameters € and y are first set to
certain pre-specified values. Then the dimensionality p of
the feature-isomorphic relevant redundant space is tuned
on the pre-specified candidate set. When an appropriate
dimensionality is determined, it is necessary to select ¢
and y on the pre-specified candidate set with the fixed
dimensionality. Similarly, for the dimensionality & of the
shared subspace and the regularization parameters « and
B in CJFL, we can set them in the same way as with IRRT.

Particularly, the k-nearest (k= 5) neighbor classifier
serves as the benchmark for the tasks of classification. In
the case of retrieval, we use the euclidean distance and the
Mean Average Precision (MAP) score to evaluate the
retrieval performance.

TABLE 1
Statistics of the Cross-View Data Sets

Dataset | Total Attributes | Total Classes | Total Samples

UCI MFeat 649 10 2000
COREL 5K 37152 260 4999
Wikipedia 258 10 2866
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TABLE 2
Brief Descriptions of the Feature Sets

Dataset | Feature Set [ Total Attributes | Total Labels | Total Instances
UCH MFeat (e Z? 10 2000
cox [Pt
T

fou (Vx)

zer(Vy) CIFL(SCP) VIM  MAAM  MVED

arrisHue(Vy) CIFL(SCP)

(a) UCI MFeat

(b) COREL 5K

VIM MAAM MVFD image (VX) text(Vy) CIFL(SCP) VTM

(c) Wikipedia

MAAM  MVFD

Fig. 5. Comparisons of classification performance of single and integrated views.

0.83

PLS CCA KCCA

(a) UCI MFeat

IRRT CCA

(b) COREL 5K

KCCA CCA KCCA

(c) Wikipedia

IRRT

Fig. 6. Comparisons of classification performance of PLS, CCA, KCCA, and IRRT.

4.3 Comparison of Single and Integrated Views

To show the advantages of an integrated view over single
views, the classification performances of them are illus-
trated in Fig. 5.

For the proposed IRRT model, we tune the dimensional-
ity p of the feature-isomorphic relevant redundant space on
the set {2’ x 100Ji =1,2,3,4,5} and the nonnegative
constraint parameters ¢ and y on the sets {10°|i = —4, -3,
—2,-1,0,1,2,3,4}. For the proposed CJFL model, the
dimensionality & of the shared subspace is selected from the
set {i x 10]i =1,2,3,...,30} and the regularization parame-
ters o and B on the candidate sets {0,107%,107?,
1074,107%,1072,1071, 1}. The parameter & in Step 5 of Algo-
rithm 3 is the number of positive singular values of the
matrix P in Step 4 of Algorithm 3 and © € R"**. The param-
eter settings in VIM [15], MAAM [16], and MVFD [17] are
the same as in their original references.

Clearly, it can be observed from Fig. 5 that the SCP
as given in Eq. (32) greatly outperforms the original
expressions of either single view. This observation confirms
our previous hypothesis that the SCP will be more favorable
for fully exploiting the complementarity among different
views. In addition, because of implementing low-rank con-
straints and eliminating the redundant and noisy informa-
tion, our proposed framework is not worse than other state-
of-the-art multi-view classification methods in classification
performance.

4.4 Evaluation on PLS, CCA, KCCA, and IRRT

To evaluate the potentiality of capturing complementary
information of the proposed IRRT model, we further make
a comparison between IRRT and the three classical correla-
tion analysis methods CCA [9], PLS [10], and KCCA [12].
Here, the dimensionality p of the feature-isomorphic space
is specified by min(d,,d,) for both PLS and CCA. For
KCCA, Gaussian kernel is used and p is identical to the
dimensionality in IRRT.

As mentioned above, due to its inherent limitations, PLS
and CCA can only project the cross-view data into a low-
dimensional space according to Eq. (3). However, as illus-
trated in Fig. 2, the underlying complementary information
from different views tends to be hidden in a high-dimen-
sional space. In addition, we can see from Fig. 6 that it is
very difficult for KCCA to capture much more complemen-
tary information without low-rank constraints as in IRRT,
although both KCCA and IRRT can map the cross-view
data into a high-dimensional space.

Just to pursue such a purpose, the proposed IRRT model
linearly maps multiple heterogeneous low-level feature
spaces to a high-dimensional redundant feature-isomorphic
one with low-rank constraints. As shown in Fig. 6, the supe-
riority of IRRT over CCA, PLS, and KCCA in the classifica-
tion performance is quite remarkable. For example, nearly
14 percent gain is achieved for the Wikipedia data set. It
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Fig. 7. Comparisons of classification performance of IRRT and CJFL.

means that IRRT can capture much more complementary
information than CCA, PLS, and KCCA.

4.5 Analysis of IRRT and CJFL

The propose of comparing the proposed IRRT and CJFL
models is twofold. One is to confirm the above-mentioned
assumption that the data representation in the mid-level
feature-isomorphic space is composed all of requisite,
redundant, and noisy components; the other is to verify the
competence of CJFL for eliminating the redundant and
noisy information.

Based on IRRT, we can build a mid-level high-dimen-
sional redundant feature-isomorphic space by correlating
heterogeneous low-level representations from different
views. However, as shown in Fig. 2, some redundant and
noisy components inevitably co-exist with the requisite
component in the mid-level high-dimensional space. In
order to eliminate the redundant and noisy information in
the mid-level space, according to Eq. (32), CJFL will extract
a unique high-level low-dimensional semantic subspace
shared across the feature-isomorphic data obtained by
IRRT.

From Fig. 7, we can see that CJFL achieves much better
classification performance than IRRT without the involve-
ment of semantic information. This result is consistent with
our previous assumption that some redundant and noisy
components are unavoidably contained in the mid-level
high-dimensional space. It also indicates that CJFL indeed
has a powerful capacity of eliminating the redundant and
noisy information.

4.6 Comparison of Trace Ratio Algorithms

In essence, like LDA [39], SSP [40], and TROP [41], the pro-
posed CJFL model is also a dimensionality reduction
method based on the trace ratio. But the explicit difference
of CJFL from the former models lies in that it fully takes
into account the correlation across isomorphic representa-
tions. So the latter will be more favorable to mine the
semantic consistency.

(b) COREL 5K

CJFL IRRT

(c) Wikipedia

CJFL

To validate this point, we first use IRRT to project the
cross-view data into a mid-level high-dimensional redun-
dant feature-isomorphic space and then apply LDA, SSP,
TROP, and CJFL to extract a low-dimensional semantic sub-
space according to Eq. (32). For LDA, SSP, and TROP, we
set k, the dimensionality of the low-dimensional subspace,
to the number of class labels.

It can be observed from Fig. 8 that CJFL shows an obvi-
ous advantage over the other methods based on the trace
ratio. This fact shows that, in contrast to the compared
approaches, CJFL is effective on maintaining the requisite
component covering the complimentary information from
different views in the mid-level space.

4.7 Evaluation on Shared Subspace Learning
Algorithms

As illustrated in Fig. 4, the proposed framework mines a
unique high-level semantically shared subspace in which
the SCP for cross-view data can be obtained. Here we com-
pare our framework with some other recently proposed
shared subspace learning methods, such as ASO [19],
CMTEFL [20], SSMLC [23], SSMCC [25], and JSNMF [27].

We use six different methods which are IRRT+CJFL,
CCA+ASO, CCA+CMTFL, CCA+SSMLC, CCA+SSMCC,
and CCA+JSNMF to produce different SCPs according to
Eq. (32). Note that, different from our framework, CCA [9]
is first implemented to build a feature-isomorphic space
among different views prior to the compared approaches.
Brief descriptions of the six methods are given in Table 3.

Specifically, both the regularization parameters in ASO
and SSMLC are set to 1073 as in [19] and [23]. For JSNMF,
the threshold is set to 1072 as in [27]. The tradeoff parameter
in SSMCC is tuned from the set {10°i = —5,-8,...,4,5}.
We select the regularization parameter in CMTFL from the
set {10°|i = —6,—5,...,2,3}.

It comes to our notice from Fig. 9 that in comparison to
other existing shared subspace learning algorithms, the pro-
posed IRRT+CJFL framework can achieve the best classifi-
cation performance. It implies that our framework can mine
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=
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Fig. 8. Comparisons of classification performance of trace ratio algorithms.
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TABLE 3
Brief Descriptions of the Six Methods
Method | Description

IRRT+CJFL IRRT is performed first before CJFL is carried out.

CCA+ASO CCA is performed first before ASO is carried out.
CCA+CMTFL | CCA is performed first before CMTFL is carried out.
CCA+SSMLC | CCA is performed first before SSMLC is carried out.
CCA+SSMCC | CCA is performed first before SSMCC is carried out.
CCA+JSNMF | CCA is performed first before JSNMF is carried out.

¥

0.7
1 +CIFL ) SNM
RRIFCIFY cCArASQ o SNV,

C A+55W“7E A *(-,mv\é CA 4sSMLC

0.5
\RRTACIFL COArASQ  prgSNME \ SSMCG A CMTFL ¢ pasSMLC

0.6
\RRTACIFL CoArASQ  prdSNME L SSMCS -\ CMTFE ( pasSMLC

(a) UCI MFeat (b) COREL 5K (c) Wikipedia
Fig. 9. Comparisons of classification performance of shared subspace learning algorithms.
TABLE 4
MAP Scores on the Cross-View Data Sets
Dataset Quer Supervised Semi-supervised Unsupervised
y CJFL [ GMLDA | LRGARF | SCM | IRRT | CCA | PLS
fou (V) 0.5422| 0.3998 0.4749 {0.2545|0.3314 |0.1830 |0.1960
UCI MFeat zer (V) 0.5031| 0.3619 0.4370 [0.2208|0.2971 | 0.1571 |0.1680
Average 0.5227| 0.3809 0.4559 (0.237710.3142 {0.1700 |0.1820
DenseHue (V,)|0.3191| 0.2387 0.2731 [0.1593|0.2191 | 0.1344 {0.1504
Corel 5K |HarrisHue (V,)]0.2840| 0.2146 0.2443 [0.1384|0.1876 {0.1145|0.1265
Average 0.3015| 0.2267 0.2587 [0.14880.2033 | 0.1245 |0.1385
image (V) |0.4632| 0.3646 0.4121 [0.2314|0.2848|0.1669 |0.1819
Wikipedia text (V) 0.4252| 0.3304 0.3796 [0.2106|0.2508 | 0.1274{0.1414
Average 0.4442| 0.3475 0.3959 [0.2210|0.2678 | 0.1472 |0.1617

the semantic consistency among isomorphic representations
more accurately than the other shared subspace learning
algorithms.

4.8 Analysis of Cross-View Retrieval Performance
Now we analyze the cross-view retrieval performance of the
proposed IRRT+CJFL framework. It consists of two inde-
pendent models IRRT and CJFL. Practicably, both of them
can be applied to cross-view retrieval. The so-called cross-
view retrieval refers to the retrieval of a view in response to
another query view. It is central to many applications of
practical interest, such as finding on the web the picture
that best matches a given text or searching the text that best
illustrates a given picture.

Particularly, some recent works for cross-view retrieval
such as Local Regression and Global Alignment and
Relevance Feedback (LRGARF) [3], Semantic Correlation
Matching (SCM) [7], and Generalized Multi-view Linear
Discriminant Analysis (GMLDA) [14] are used to make
retrieval performance comparisons with our models.
Depending on their supervised mode, CJFL and GMLDA
can be categorized into supervised methods, LRGARF and

SCM belong to semi-supervised approaches, and IRRT,
CCA and PLS are unsupervised models.

For GMLDA, the positive parameters are set to 10 and
1, and the constraint parameter is set to the trace ratio of
the square symmetric defined matrices. We specify the
regularization parameter of LRGARF by 1,000, and set
the dimensionality &k of the low-dimensional subspace to
the number of class labels. For SCM, the semantic spaces
produced by logistic regression are 10-dimensional prob-
ability simplexes.

For CCA and IRRT, the cross-view retrieval is carried out
using the 1, and p,, (see Eq. (2)) as their query view, respec-
tively. Similarly, we use the 7, and 7, (see Eq. (31)) as the
query view for CJFL. The MAP scores of all the methods for
cross-view retrieval are listed in Table 4.

It can be seen from Table 4 that, as unsupervised
approaches for cross-view retrieval, IRRT is superior to
CCA and PLS and even better than the semi-supervised
algorithm SCM. It implies that the feature-isomorphic space
by IRRT can capture much more complimentary informa-
tion from different views than CCA. In addition, compared
with other supervised and semi-supervised methods with
prior knowledge (class information), the CJFL achieves the
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(a) UCI MFeat

Fig. 10. Sensitivity of Parameters ¢ and y for IRRT.
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Fig. 11. Sensitivity of Parameter « for CJFL.

best performance. The comparisons with IRRT, CCA and
PLS show that the cross-view retrieval performance can be
greatly improved with the involvement of prior knowledge.

4.9 Parameter Sensitivity of IRRT and CJFL

We further evaluate the parameter sensitivity of the pro-
posed models IRRT and CJFL with respect to their own
important parameters. Since the parameters ¢ and y in
Eq. (4) control the amount of information carried by the
transformed data, here we focus on the evaluation of perfor-
mance variation of IRRT with respect to ¢ and y. Fig. 10
shows the performance variation of IRRT with different
parameter values of ¢ and y, which suggests the optimal
value for both € and y is 1072,

In addition, since the parameter « in Eq. (28) is applied to
avoid violating the intrinsic structure of the coupled repre-
sentations, it is crucial to observe performance variation of
CJFL with respect to «. It can be found from Fig. 11 that
CJFL achieves the best performance on all three data sets
when « is set to 1072

5 CONCLUSION

In this paper, we have investigated the problem of consis-
tently representing the objects from different views on the
basis of their correlations or complementarities. We devel-
oped a general framework to project cross-view data into a
unique high-level low-dimensional semantically shared
subspace to mine the SCP for cross-view data. Within this
framework, the proposed IRRT model builds a bridge
between multiple heterogeneous low-level feature spaces
and a unique high-level semantically shared space. Fur-
thermore, we also proposed a CJFL model to mine the
semantic consistency among isomorphic representations.
Practically, the proposed IRRT and CJFL in our frame-
work can be easily extended to multi-view cases. In addi-
tion, they are so flexible that either algorithm combined

10° 10? 10" 10’ 10 10° 10* 10° 10? 10" 10’
o o

(b) COREL 5K

(c) Wikipedia

with other existing algorithms can be applied to solve the
cross-view problem.
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